Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 90(4): e0204423, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38483171

RESUMEN

The ability of some white rot basidiomycetes to remove lignin selectively from wood indicates that low molecular weight oxidants have a role in ligninolysis. These oxidants are likely free radicals generated by fungal peroxidases from compounds in the biodegrading wood. Past work supports a role for manganese peroxidases (MnPs) in the production of ligninolytic oxidants from fungal membrane lipids. However, the fatty acid alkylperoxyl radicals initially formed during this process are not reactive enough to attack the major structures in lignin. Here, we evaluate the hypothesis that the peroxidation of fatty aldehydes might provide a source of more reactive acylperoxyl radicals. We found that Gelatoporia subvermispora produced trans-2-nonenal, trans-2-octenal, and n-hexanal (a likely metabolite of trans-2,4-decadienal) during the incipient decay of aspen wood. Fungal fatty aldehydes supported the in vitro oxidation by MnPs of a nonphenolic lignin model dimer, and also of the monomeric model veratryl alcohol. Experiments with the latter compound showed that the reactions were partially inhibited by oxalate, the chelator that white rot fungi employ to detach Mn3+ from the MnP active site, but nevertheless proceeded at its physiological concentration of 1 mM. The addition of catalase was inhibitory, which suggests that the standard MnP catalytic cycle is involved in the oxidation of aldehydes. MnP oxidized trans-2-nonenal quantitatively to trans-2-nonenoic acid with the consumption of one O2 equivalent. The data suggest that when Mn3+ remains associated with MnP, it can oxidize aldehydes to their acyl radicals, and the latter subsequently add O2 to become ligninolytic acylperoxyl radicals.IMPORTANCEThe biodegradation of lignin by white rot fungi is essential for the natural recycling of plant biomass and has useful applications in lignocellulose bioprocessing. Although fungal peroxidases have a key role in ligninolysis, past work indicates that biodegradation is initiated by smaller, as yet unidentified oxidants that can infiltrate the substrate. Here, we present evidence that the peroxidase-catalyzed oxidation of naturally occurring fungal aldehydes may provide a source of ligninolytic free radical oxidants.


Asunto(s)
Basidiomycota , Manganeso , Polyporales , Lignina/metabolismo , Proteínas Fúngicas/metabolismo , Basidiomycota/metabolismo , Aldehídos , Peroxidasas/metabolismo , Ácidos Grasos , Oxidantes
2.
Nat Commun ; 14(1): 2227, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-37076534

RESUMEN

Lignin is an abundant and complex plant polymer that may limit litter decomposition, yet lignin is sometimes a minor constituent of soil organic carbon (SOC). Accounting for diversity in soil characteristics might reconcile this apparent contradiction. Tracking decomposition of a lignin/litter mixture and SOC across different North American mineral soils using lab and field incubations, here we show that cumulative lignin decomposition varies 18-fold among soils and is strongly correlated with bulk litter decomposition, but not SOC decomposition. Climate legacy predicts decomposition in the lab, and impacts of nitrogen availability are minor compared with geochemical and microbial properties. Lignin decomposition increases with some metals and fungal taxa, whereas SOC decomposition decreases with metals and is weakly related with fungi. Decoupling of lignin and SOC decomposition and their contrasting biogeochemical drivers indicate that lignin is not necessarily a bottleneck for SOC decomposition and can explain variable contributions of lignin to SOC among ecosystems.


Asunto(s)
Carbono , Lignina , Suelo/química , Ecosistema , Clima , Microbiología del Suelo
3.
Ecology ; 101(9): e03113, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32506475

RESUMEN

Lignin's role in litter and soil organic carbon (SOC) decomposition remains contentious. Lignin decomposition was traditionally thought to increase during midstage litter decomposition, when cellulose occlusion by lignin began to limit mass loss. Alternatively, lignin decomposition could be greatest in fresh litter as a consequence of co-metabolism, and lignin might decompose faster than bulk SOC. To test these competing hypotheses, we incubated 10 forest soils with C4 grass litter (amended with 13 C-labeled or unlabeled lignin) over 2 yr and measured soil respiration and its isotope composition. Early lignin decomposition was greatest in 5 of 10 soils, consistent with the co-metabolism hypothesis. However, lignin decomposition peaked 6-24 months later in the other five soils, consistent with the substrate-limitation hypothesis; these soils were highly acidic. Rates of lignin, litter, and SOC decomposition tended to converge over time. Cumulative lignin decomposition was never greater than SOC decomposition; lignin decomposition was significantly lower than SOC decomposition in six soils. Net nitrogen mineralization predicted lignin decomposition ratios relative to litter and SOC. Although the onset of lignin decomposition can indeed be rapid, lignin still presents a likely bottleneck in litter and SOC decomposition, meriting a reconsideration of lignin's role in modern decomposition paradigms.


Asunto(s)
Lignina , Suelo , Carbono , Bosques , Nitrógeno
4.
Environ Sci Technol ; 53(13): 7522-7531, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31177774

RESUMEN

A modern paradigm of soil organic matter proposes that persistent carbon (C) derives primarily from microbial residues interacting with minerals, challenging older ideas that lignin moieties contribute to soil C because of inherent recalcitrance. We proposed that aspects of these old and new paradigms can be partially reconciled by considering interactions between lignin decomposition products and redox-sensitive iron (Fe) minerals. An Fe-rich tropical soil (with C4 litter and either 13C-labeled or unlabeled lignin) was pretreated with different durations of anaerobiosis (0-12 days) and incubated aerobically for 317 days. Only 5.7 ± 0.2% of lignin 13C was mineralized to CO2 versus 51.2 ± 0.4% of litter C. More added lignin-derived C (48.2 ± 0.9%) than bulk litter-derived C (30.6 ± 0.7%) was retained in mineral-associated organic matter (MAOM; density >1.8 g cm-3), and 12.2 ± 0.3% of lignin-derived C vs 6.4 ± 0.1% of litter C accrued in clay-sized (<2 µm) MAOM. Longer anaerobic pretreatments increased added lignin-derived C associated with Fe, according to extractions and nanoscale secondary ion mass spectrometry (NanoSIMS). Microbial residues are important, but lignin-derived C may also contribute disproportionately to MAOM relative to bulk litter-derived C, especially following redox-sensitive biogeochemical interactions.


Asunto(s)
Carbono , Suelo , Lignina , Minerales , Microbiología del Suelo
5.
J Biol Chem ; 293(13): 4702-4712, 2018 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-29462790

RESUMEN

Peroxidases are considered essential agents of lignin degradation by white-rot basidiomycetes. However, low-molecular-weight oxidants likely have a primary role in lignin breakdown because many of these fungi delignify wood before its porosity has sufficiently increased for enzymes to infiltrate. It has been proposed that lignin peroxidases (LPs, EC 1.11.1.14) fulfill this role by oxidizing the secreted fungal metabolite veratryl alcohol (VA) to its aryl cation radical (VA+•), releasing it to act as a one-electron lignin oxidant within woody plant cell walls. Here, we attached the fluorescent oxidant sensor BODIPY 581/591 throughout beads with a nominal porosity of 6 kDa and assessed whether peroxidase-generated aryl cation radical systems could oxidize the beads. As positive control, we used the 1,2,4,5-tetramethoxybenzene (TMB) cation radical, generated from TMB by horseradish peroxidase. This control oxidized the beads to depths that increased with the amount of oxidant supplied, ultimately resulting in completely oxidized beads. A reaction-diffusion computer model yielded oxidation profiles that were within the 95% confidence intervals for the data. By contrast, bead oxidation caused by VA and the LPA isozyme of Phanerochaete chrysosporium was confined to a shallow shell of LP-accessible volume at the bead surface, regardless of how much oxidant was supplied. This finding contrasted with the modeling results, which showed that if the LP/VA system were to release VA+•, it would oxidize the bead interiors. We conclude that LPA releases insignificant quantities of VA+• and that a different mechanism produces small ligninolytic oxidants during white rot.


Asunto(s)
Alcoholes Bencílicos/química , Radicales Libres/química , Proteínas Fúngicas/química , Peroxidasas/química , Polyporales/enzimología , Oxidación-Reducción
6.
Rapid Commun Mass Spectrom ; 31(22): 1938-1946, 2017 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-28851092

RESUMEN

RATIONALE: Carbon dioxide isotope (δ13 C value) measurements enable quantification of the sources of soil microbial respiration, thus informing ecosystem C dynamics. Tunable diode lasers (TDLs) can precisely measure CO2 isotopes at low cost and high throughput, but are seldom used for small samples (≤5 mL). We developed a TDL method for CO2 mole fraction ([CO2 ]) and δ13 C analysis of soil microcosms. METHODS: Peaks in infrared absorbance following constant volume sample injection to a carrier were used to independently measure [12 CO2 ] and [13 CO2 ] for subsequent calculation of δ13 C values. Using parallel soil incubations receiving differing C substrates, we partitioned respiration from three sources using mixing models: native soil organic matter (SOM), added litter, and synthetic lignin containing a 13 C label at Cß of the propyl side chain. RESULTS: Once-daily TDL calibration enabled accurate quantification of δ13 C values and [CO2 ] compared with isotope ratio mass spectrometry (IRMS), with long-term external precision of 0.17 and 0.31‰ for 5 and 1 mL samples, respectively, and linear response between 400 and 5000 µmol mol-1 CO2 . Production of CO2 from native soil C, added litter, and lignin Cß varied over four orders of magnitude. Multiple-pool first-order decay models fitted to data (R2  > 0.98) indicated substantially slower turnover for lignin Cß (17 years) than for the dominant pool of litter (1.3 years) and primed soil C (3.9 years). CONCLUSIONS: Our TDL method provides a flexible, precise, and high-throughput (60 samples h-1 ) alternative to IRMS for small samples. This enables the use of C isotopes in increasingly sophisticated experiments to test biogeochemical controversies, such as the fate of lignins in soil.

7.
Proc Natl Acad Sci U S A ; 113(39): 10968-73, 2016 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-27621450

RESUMEN

Wood-degrading brown rot fungi are essential recyclers of plant biomass in forest ecosystems. Their efficient cellulolytic systems, which have potential biotechnological applications, apparently depend on a combination of two mechanisms: lignocellulose oxidation (LOX) by reactive oxygen species (ROS) and polysaccharide hydrolysis by a limited set of glycoside hydrolases (GHs). Given that ROS are strongly oxidizing and nonselective, these two steps are likely segregated. A common hypothesis has been that brown rot fungi use a concentration gradient of chelated metal ions to confine ROS generation inside wood cell walls before enzymes can infiltrate. We examined an alternative: that LOX components involved in ROS production are differentially expressed by brown rot fungi ahead of GH components. We used spatial mapping to resolve a temporal sequence in Postia placenta, sectioning thin wood wafers colonized directionally. Among sections, we measured gene expression by whole-transcriptome shotgun sequencing (RNA-seq) and assayed relevant enzyme activities. We found a marked pattern of LOX up-regulation in a narrow (5-mm, 48-h) zone at the hyphal front, which included many genes likely involved in ROS generation. Up-regulation of GH5 endoglucanases and many other GHs clearly occurred later, behind the hyphal front, with the notable exceptions of two likely expansins and a GH28 pectinase. Our results support a staggered mechanism for brown rot that is controlled by differential expression rather than microenvironmental gradients. This mechanism likely results in an oxidative pretreatment of lignocellulose, possibly facilitated by expansin- and pectinase-assisted cell wall swelling, before cellulases and hemicellulases are deployed for polysaccharide depolymerization.


Asunto(s)
Coriolaceae/genética , Regulación Fúngica de la Expresión Génica , Madera/microbiología , Análisis por Conglomerados , Coriolaceae/enzimología , Coriolaceae/crecimiento & desarrollo , Genes Fúngicos , Lignina , Micelio/fisiología , Oxidación-Reducción , Transcripción Genética
8.
PLoS One ; 11(7): e0159715, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27454126

RESUMEN

Colonization of wood blocks by brown and white rot fungi rapidly resulted in detectable wood oxidation, as shown by a reduced phloroglucinol response, a loss of autofluorescence, and acridine orange (AO) staining. This last approach is shown to provide a novel method for identifying wood oxidation. When lignin was mildly oxidized, the association between AO and lignin was reduced such that stained wood sections emitted less green light during fluorescence microscopy. This change was detectable after less than a week, an interval that past work has shown to be too short for significant delignification of wood. Although fungal hyphae were observed in only a few wood lumina, oxidation was widespread, appearing relatively uniform over regions several hundred micrometers from the hyphae. This observation suggests that both classes of fungi release low molecular weight mild oxidants during the first few days of colonization.


Asunto(s)
Naranja de Acridina/metabolismo , Pared Celular/metabolismo , Pared Celular/microbiología , Hongos , Oxidación-Reducción , Madera/metabolismo , Madera/microbiología
9.
Fungal Genet Biol ; 92: 50-64, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27166667

RESUMEN

Breeding new strains with improved traits is a long-standing goal of mushroom breeders that can be expedited by marker-assisted selection (MAS). We constructed a genetic linkage map of Pleurotus eryngii based on segregation analysis of markers in postmeiotic monokaryons from KNR2312. In total, 256 loci comprising 226 simple sequence-repeat (SSR) markers, 2 mating-type factors, and 28 insertion/deletion (InDel) markers were mapped. The map consisted of 12 linkage groups (LGs) spanning 1047.8cM, with an average interval length of 4.09cM. Four independent populations (Pd3, Pd8, Pd14, and Pd15) derived from crossing between four monokaryons from KNR2532 as a tester strain and 98 monokaryons from KNR2312 were used to characterize quantitative trait loci (QTL) for nine traits such as yield, quality, cap color, and earliness. Using composite interval mapping (CIM), 71 QTLs explaining between 5.82% and 33.17% of the phenotypic variations were identified. Clusters of more than five QTLs for various traits were identified in three genomic regions, on LGs 1, 7 and 9. Regardless of the population, 6 of the 9 traits studied and 18 of the 71 QTLs found in this study were identified in the largest cluster, LG1, in the range from 65.4 to 110.4cM. The candidate genes for yield encoding transcription factor, signal transduction, mycelial growth and hydrolase are suggested by using manual and computational analysis of genome sequence corresponding to QTL region with the highest likelihood odds (LOD) for yield. The genetic map and the QTLs established in this study will help breeders and geneticists to develop selection markers for agronomically important characteristics of mushrooms and to identify the corresponding genes.


Asunto(s)
Ligamiento Genético , Marcadores Genéticos , Pleurotus/genética , Sitios de Carácter Cuantitativo/genética , Cruzamiento , Mapeo Cromosómico , Cruzamientos Genéticos , Repeticiones de Microsatélite/genética , Fenotipo , Pleurotus/crecimiento & desarrollo
10.
Appl Environ Microbiol ; 81(22): 7802-12, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26341198

RESUMEN

Since uncertainty remains about how white rot fungi oxidize and degrade lignin in wood, it would be useful to monitor changes in fungal gene expression during the onset of ligninolysis on a natural substrate. We grew Phanerochaete chrysosporium on solid spruce wood and included oxidant-sensing beads bearing the fluorometric dye BODIPY 581/591 in the cultures. Confocal fluorescence microscopy of the beads showed that extracellular oxidation commenced 2 to 3 days after inoculation, coincident with cessation of fungal growth. Whole transcriptome shotgun sequencing (RNA-seq) analyses based on the v.2.2 P. chrysosporium genome identified 356 genes whose transcripts accumulated to relatively high levels at 96 h and were at least four times the levels found at 40 h. Transcripts encoding some lignin peroxidases, manganese peroxidases, and auxiliary enzymes thought to support their activity showed marked apparent upregulation. The data were also consistent with the production of ligninolytic extracellular reactive oxygen species by the action of manganese peroxidase-catalyzed lipid peroxidation, cellobiose dehydrogenase-catalyzed Fe(3+) reduction, and oxidase-catalyzed H2O2 production, but the data do not support a role for iron-chelating glycopeptides. In addition, transcripts encoding a variety of proteins with possible roles in lignin fragment uptake and processing, including 27 likely transporters and 18 cytochrome P450s, became more abundant after the onset of extracellular oxidation. Genes encoding cellulases showed little apparent upregulation and thus may be expressed constitutively. Transcripts corresponding to 165 genes of unknown function accumulated more than 4-fold after oxidation commenced, and some of them may merit investigation as possible contributors to ligninolysis.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Lignina/metabolismo , Phanerochaete/genética , Madera/microbiología , Fluorometría , Microesferas , Análisis de Secuencia por Matrices de Oligonucleótidos , Oxidación-Reducción , Phanerochaete/metabolismo , Picea/microbiología , Análisis de Secuencia de ARN
11.
Arch Biochem Biophys ; 574: 66-74, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25637654

RESUMEN

The first enzyme with dye-decolorizing peroxidase (DyP) activity was described in 1999 from an arthroconidial culture of the fungus Bjerkandera adusta. However, the first DyP sequence had been deposited three years before, as a peroxidase gene from a culture of an unidentified fungus of the family Polyporaceae (probably Irpex lacteus). Since the first description, fewer than ten basidiomycete DyPs have been purified and characterized, but a large number of sequences are available from genomes. DyPs share a general fold and heme location with chlorite dismutases and other DyP-type related proteins (such as Escherichia coli EfeB), forming the CDE superfamily. Taking into account the lack of an evolutionary relationship with the catalase-peroxidase superfamily, the observed heme pocket similarities must be considered as a convergent type of evolution to provide similar reactivity to the enzyme cofactor. Studies on the Auricularia auricula-judae DyP showed that high-turnover oxidation of anthraquinone type and other DyP substrates occurs via long-range electron transfer from an exposed tryptophan (Trp377, conserved in most basidiomycete DyPs), whose catalytic radical was identified in the H2O2-activated enzyme. The existence of accessory oxidation sites in DyP is suggested by the residual activity observed after site-directed mutagenesis of the above tryptophan. DyP degradation of substituted anthraquinone dyes (such as Reactive Blue 5) most probably proceeds via typical one-electron peroxidase oxidations and product breakdown without a DyP-catalyzed hydrolase reaction. Although various DyPs are able to break down phenolic lignin model dimers, and basidiomycete DyPs also present marginal activity on nonphenolic dimers, a significant contribution to lignin degradation is unlikely because of the low activity on high redox-potential substrates.


Asunto(s)
Basidiomycota/enzimología , Genoma Fúngico , Peroxidasas/metabolismo , Basidiomycota/genética , Dominio Catalítico , Color , Colorantes/metabolismo , Peroxidasas/química , Peroxidasas/genética , Filogenia , Conformación Proteica , Pliegue de Proteína
12.
Glob Chang Biol ; 21(7): 2818-2828, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25711691

RESUMEN

Lignin mineralization represents a critical flux in the terrestrial carbon (C) cycle, yet little is known about mechanisms and environmental factors controlling lignin breakdown in mineral soils. Hypoxia is thought to suppress lignin decomposition, yet potential effects of oxygen (O2 ) variability in surface soils have not been explored. Here, we tested the impact of redox fluctuations on lignin breakdown in humid tropical forest soils during ten-week laboratory incubations. We used synthetic lignins labeled with 13 C in either of two positions (aromatic methoxyl or propyl side chain Cß ) to provide highly sensitive and specific measures of lignin mineralization seldom employed in soils. Four-day redox fluctuations increased the percent contribution of methoxyl C to soil respiration relative to static aerobic conditions, and cumulative methoxyl-C mineralization was statistically equivalent under static aerobic and fluctuating redox conditions despite lower soil respiration in the latter treatment. Contributions of the less labile lignin Cß to soil respiration were equivalent in the static aerobic and fluctuating redox treatments during periods of O2 exposure, and tended to decline during periods of O2 limitation, resulting in lower cumulative Cß mineralization in the fluctuating treatment relative to the static aerobic treatment. However, cumulative mineralization of both the Cß - and methoxyl-labeled lignins nearly doubled in the fluctuating treatment relative to the static aerobic treatment when total lignin mineralization was normalized to total O2 exposure. Oxygen fluctuations are thought to be suboptimal for canonical lignin-degrading microorganisms. However, O2 fluctuations drove substantial Fe reduction and oxidation, and reactive oxygen species generated during abiotic Fe oxidation might explain the elevated contribution of lignin to C mineralization. Iron redox cycling provides a potential mechanism for lignin depletion in soil organic matter. Couplings between soil moisture, redox fluctuations, and lignin breakdown provide a potential link between climate variability and the biochemical composition of soil organic matter.

13.
Appl Environ Microbiol ; 80(24): 7536-44, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25261514

RESUMEN

The white rot basidiomycete Ceriporiopsis subvermispora delignifies wood selectively and has potential biotechnological applications. Its ability to remove lignin before the substrate porosity has increased enough to admit enzymes suggests that small diffusible oxidants contribute to delignification. A key question is whether these unidentified oxidants attack lignin via single-electron transfer (SET), in which case they are expected to cleave its propyl side chains between Cα and Cß and to oxidize the threo-diastereomer of its predominating ß-O-4-linked structures more extensively than the corresponding erythro-diastereomer. We used two-dimensional solution-state nuclear magnetic resonance (NMR) techniques to look for changes in partially biodegraded lignin extracted from spruce wood after white rot caused by C. subvermispora. The results showed that (i) benzoic acid residues indicative of Cα-Cß cleavage were the major identifiable truncated structures in lignin after decay and (ii) depletion of ß-O-4-linked units was markedly diastereoselective with a threo preference. The less selective delignifier Phanerochaete chrysosporium also exhibited this diastereoselectivity on spruce, and a P. chrysosporium lignin peroxidase operating in conjunction with the P. chrysosporium metabolite veratryl alcohol did likewise when cleaving synthetic lignin in vitro. However, C. subvermispora was significantly more diastereoselective than P. chrysosporium or lignin peroxidase-veratryl alcohol. Our results show that the ligninolytic oxidants of C. subvermispora are collectively more diastereoselective than currently known fungal ligninolytic oxidants and suggest that SET oxidation is one of the chemical mechanisms involved.


Asunto(s)
Coriolaceae/metabolismo , Lignina/metabolismo , Oxidantes/química , Oxidantes/metabolismo , Picea/microbiología , Madera/microbiología , Biodegradación Ambiental , Coriolaceae/enzimología , Proteínas Fúngicas/metabolismo , Lignina/química , Estructura Molecular , Oxidación-Reducción , Peroxidasas/metabolismo , Phanerochaete/metabolismo , Picea/metabolismo , Madera/metabolismo
14.
Biotechnol Biofuels ; 7(1): 2, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24387130

RESUMEN

BACKGROUND: The genome of Pleurotus ostreatus, an important edible mushroom and a model ligninolytic organism of interest in lignocellulose biorefineries due to its ability to delignify agricultural wastes, was sequenced with the purpose of identifying and characterizing the enzymes responsible for lignin degradation. RESULTS: Heterologous expression of the class II peroxidase genes, followed by kinetic studies, enabled their functional classification. The resulting inventory revealed the absence of lignin peroxidases (LiPs) and the presence of three versatile peroxidases (VPs) and six manganese peroxidases (MnPs), the crystal structures of two of them (VP1 and MnP4) were solved at 1.0 to 1.1 Å showing significant structural differences. Gene expansion supports the importance of both peroxidase types in the white-rot lifestyle of this fungus. Using a lignin model dimer and synthetic lignin, we showed that VP is able to degrade lignin. Moreover, the dual Mn-mediated and Mn-independent activity of P. ostreatus MnPs justifies their inclusion in a new peroxidase subfamily. The availability of the whole POD repertoire enabled investigation, at a biochemical level, of the existence of duplicated genes. Differences between isoenzymes are not limited to their kinetic constants. Surprising differences in their activity T50 and residual activity at both acidic and alkaline pH were observed. Directed mutagenesis and spectroscopic/structural information were combined to explain the catalytic and stability properties of the most interesting isoenzymes, and their evolutionary history was analyzed in the context of over 200 basidiomycete peroxidase sequences. CONCLUSIONS: The analysis of the P. ostreatus genome shows a lignin-degrading system where the role generally played by LiP has been assumed by VP. Moreover, it enabled the first characterization of the complete set of peroxidase isoenzymes in a basidiomycete, revealing strong differences in stability properties and providing enzymes of biotechnological interest.

15.
Biochem J ; 452(3): 575-84, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23548202

RESUMEN

LiP (lignin peroxidase) from Trametopsis cervina has an exposed catalytic tyrosine residue (Tyr181) instead of the tryptophan conserved in other lignin-degrading peroxidases. Pristine LiP showed a lag period in VA (veratryl alcohol) oxidation. However, VA-LiP (LiP after treatment with H2O2 and VA) lacked this lag, and H2O2-LiP (H2O2-treated LiP) was inactive. MS analyses revealed that VA-LiP includes one VA molecule covalently bound to the side chain of Tyr181, whereas H2O2-LiP contains a hydroxylated Tyr181. No adduct is formed in the Y171N variant. Molecular docking showed that VA binding is favoured by sandwich π stacking with Tyr181 and Phe89. EPR spectroscopy after peroxide activation of the pre-treated LiPs showed protein radicals other than the tyrosine radical found in pristine LiP, which were assigned to a tyrosine-VA adduct radical in VA-LiP and a dihydroxyphenyalanine radical in H2O2-LiP. Both radicals are able to oxidize large low-redox-potential substrates, but H2O2-LiP is unable to oxidize high-redox-potential substrates. Transient-state kinetics showed that the tyrosine-VA adduct strongly promotes (>100-fold) substrate oxidation by compound II, the rate-limiting step in catalysis. The novel activation mechanism is involved in ligninolysis, as demonstrated using lignin model substrates. The present paper is the first report on autocatalytic modification, resulting in functional alteration, among class II peroxidases.


Asunto(s)
Proteínas Fúngicas/química , Lignina/metabolismo , Peroxidasas/química , Trametes/enzimología , Tirosina/química , Activación Enzimática/fisiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Peroxidasas/genética , Peroxidasas/metabolismo , Unión Proteica/fisiología , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
16.
Appl Environ Microbiol ; 79(7): 2377-83, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23377930

RESUMEN

Basidiomycetes that cause brown rot of wood are essential biomass recyclers in coniferous forest ecosystems and a major cause of failure in wooden structures. Recent work indicates that distinct lineages of brown rot fungi have arisen independently from ligninolytic white rot ancestors via loss of lignocellulolytic enzymes. Brown rot thus proceeds without significant lignin removal, apparently beginning instead with oxidative attack on wood polymers by Fenton reagent produced when fungal hydroquinones or catechols reduce Fe(3+) in colonized wood. Since there is little evidence that white rot fungi produce these metabolites, one question is the extent to which independent lineages of brown rot fungi may have evolved different Fe(3+) reductants. Recently, the catechol variegatic acid was proposed to drive Fenton chemistry in Serpula lacrymans, a brown rot member of the Boletales (D. C. Eastwood et al., Science 333:762-765, 2011). We found no variegatic acid in wood undergoing decay by S. lacrymans. We found also that variegatic acid failed to reduce in vitro the Fe(3+) oxalate chelates that predominate in brown-rotting wood and that it did not drive Fenton chemistry in vitro under physiological conditions. Instead, the decaying wood contained physiologically significant levels of 2,5-dimethoxyhydroquinone, a reductant with a demonstrated biodegradative role when wood is attacked by certain brown rot fungi in two other divergent lineages, the Gloeophyllales and Polyporales. Our results suggest that the pathway for 2,5-dimethoxyhydroquinone biosynthesis may have been present in ancestral white rot basidiomycetes but do not rule out the possibility that it appeared multiple times via convergent evolution.


Asunto(s)
Basidiomycota/metabolismo , Hidroquinonas/metabolismo , Lignina/metabolismo , Compuestos Férricos/metabolismo , Redes y Vías Metabólicas , Oxidación-Reducción , Madera/metabolismo , Madera/microbiología
17.
Environ Microbiol ; 15(3): 956-66, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23206186

RESUMEN

Oxidative cleavage of the recalcitrant plant polymer lignin is a crucial step in global carbon cycling, and is accomplished most efficiently by fungi that cause white rot of wood. These basidiomycetes secrete many enzymes and metabolites with proposed ligninolytic roles, and it is not clear whether all of these agents are physiologically important during attack on natural lignocellulosic substrates. One new approach to this problem is to infer properties of ligninolytic oxidants from their spatial distribution relative to the fungus on the lignocellulose. We grew Phanerochaete chrysosporium on wood sections in the presence of oxidant-sensing beads based on the ratiometric fluorescent dye BODIPY 581/591. The beads, having fixed locations relative to the fungal hyphae, enabled spatial mapping of cumulative extracellular oxidant distributions by confocal fluorescence microscopy. The results showed that oxidation gradients occurred around the hyphae, and data analysis using a mathematical reaction-diffusion model indicated that the dominant oxidant during incipient white rot had a half-life under 0.1 s. The best available hypothesis is that this oxidant is the cation radical of the secreted P. chrysosporium metabolite veratryl alcohol.


Asunto(s)
Lignina/metabolismo , Oxidantes/metabolismo , Phanerochaete/metabolismo , Madera/microbiología , Alcoholes Bencílicos/química , Semivida , Hifa/metabolismo , Oxidantes/biosíntesis , Phanerochaete/química , Phanerochaete/genética
18.
Proc Natl Acad Sci U S A ; 109(14): 5458-63, 2012 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-22434909

RESUMEN

Efficient lignin depolymerization is unique to the wood decay basidiomycetes, collectively referred to as white rot fungi. Phanerochaete chrysosporium simultaneously degrades lignin and cellulose, whereas the closely related species, Ceriporiopsis subvermispora, also depolymerizes lignin but may do so with relatively little cellulose degradation. To investigate the basis for selective ligninolysis, we conducted comparative genome analysis of C. subvermispora and P. chrysosporium. Genes encoding manganese peroxidase numbered 13 and five in C. subvermispora and P. chrysosporium, respectively. In addition, the C. subvermispora genome contains at least seven genes predicted to encode laccases, whereas the P. chrysosporium genome contains none. We also observed expansion of the number of C. subvermispora desaturase-encoding genes putatively involved in lipid metabolism. Microarray-based transcriptome analysis showed substantial up-regulation of several desaturase and MnP genes in wood-containing medium. MS identified MnP proteins in C. subvermispora culture filtrates, but none in P. chrysosporium cultures. These results support the importance of MnP and a lignin degradation mechanism whereby cleavage of the dominant nonphenolic structures is mediated by lipid peroxidation products. Two C. subvermispora genes were predicted to encode peroxidases structurally similar to P. chrysosporium lignin peroxidase and, following heterologous expression in Escherichia coli, the enzymes were shown to oxidize high redox potential substrates, but not Mn(2+). Apart from oxidative lignin degradation, we also examined cellulolytic and hemicellulolytic systems in both fungi. In summary, the C. subvermispora genetic inventory and expression patterns exhibit increased oxidoreductase potential and diminished cellulolytic capability relative to P. chrysosporium.


Asunto(s)
Basidiomycota/genética , Genómica , Lignina/metabolismo , Basidiomycota/clasificación , Hidrólisis , Datos de Secuencia Molecular , Oxidación-Reducción , Filogenia , Especificidad de la Especie
19.
J Biol Chem ; 287(20): 16903-16, 2012 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-22437835

RESUMEN

The white-rot fungus Ceriporiopsis subvermispora delignifies lignocellulose with high selectivity, but until now it has appeared to lack the specialized peroxidases, termed lignin peroxidases (LiPs) and versatile peroxidases (VPs), that are generally thought important for ligninolysis. We screened the recently sequenced C. subvermispora genome for genes that encode peroxidases with a potential ligninolytic role. A total of 26 peroxidase genes was apparent after a structural-functional classification based on homology modeling and a search for diagnostic catalytic amino acid residues. In addition to revealing the presence of nine heme-thiolate peroxidase superfamily members and the unexpected absence of the dye-decolorizing peroxidase superfamily, the search showed that the C. subvermispora genome encodes 16 class II enzymes in the plant-fungal-bacterial peroxidase superfamily, where LiPs and VPs are classified. The 16 encoded enzymes include 13 putative manganese peroxidases and one generic peroxidase but most notably two peroxidases containing the catalytic tryptophan characteristic of LiPs and VPs. We expressed these two enzymes in Escherichia coli and determined their substrate specificities on typical LiP/VP substrates, including nonphenolic lignin model monomers and dimers, as well as synthetic lignin. The results show that the two newly discovered C. subvermispora peroxidases are functionally competent LiPs and also suggest that they are phylogenetically and catalytically intermediate between classical LiPs and VPs. These results offer new insight into selective lignin degradation by C. subvermispora.


Asunto(s)
Coriolaceae/enzimología , Genoma Fúngico/fisiología , Lignina/metabolismo , Familia de Multigenes/fisiología , Peroxidasa/metabolismo , Catálisis , Coriolaceae/genética , Escherichia coli/enzimología , Escherichia coli/genética , Peroxidasa/química , Peroxidasa/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
20.
Enzyme Microb Technol ; 49(1): 25-9, 2011 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-22112267

RESUMEN

The peroxidation of C18 unsaturated fatty acids by fungal manganese peroxidase (MnP)/Mn(II) and by chelated Mn(III) was studied with application of three different methods: by monitoring oxygen consumption, by measuring conjugated dienes and by thiobarbituric acid-reactive substances (TBARS) formation. All tested polyunsaturated fatty acids (PUFAs) were oxidized by MnP in the presence of Mn(II) ions but the rate of their oxidation was not directly related to degree of their unsaturation. As it has been shown by monitoring oxygen consumption and conjugated dienes formation the linoleic acid was the most easily oxidizable fatty acid for MnP/Mn(II) and chelated Mn(III). However, when the lipid peroxidation (LPO) activity was monitored by TBARS formation the linolenic acid gave the highest results. High accumulation of TBARS was also recorded during peroxidation of linoleic acid initiated by MnP/Mn(II). Action of Mn(III)-tartrate on the PUFAs mimics action of MnP in the presence of Mn(II) indicating that Mn(III) ions are involved in LPO initiation. Although in our experiments Mn(III) tartrate gave faster than MnP/Mn(II) initial oxidation of the unsaturated fatty acids with consumption of O(2) and formation of conjugated dienes the process was not productive and did not support further development of LPO. The higher effectiveness of MnP/Mn(II)-initiated LPO system depends on the turnover of manganese provided by MnP. It is proposed that the oxygen consumption assay is the best express method for evaluation of MnP- and Mn(III)-initiated peroxidation of C18 unsaturated fatty acids.


Asunto(s)
Ácidos Grasos Insaturados/metabolismo , Manganeso/química , Manganeso/metabolismo , Peroxidasas/metabolismo , Basidiomycota/enzimología , Biodegradación Ambiental , Peroxidación de Lípido , Oxidación-Reducción , Consumo de Oxígeno , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Ácido alfa-Linolénico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...